Performance evaluation of Statistical Approaches for Automatic Text-Independent Speaker Recognition using Robust Features
نویسندگان
چکیده
This paper introduces the performance evaluation of statististical approaches for Automatic-text-independent Speaker Recognition system. Automatic-text-independent Speaker Recognition system is to quickly and accurately identify the person from his/her voice. The study on the effect of feature vector size for good speaker recognition demonstrates that the feature vector size in the range of 18-22 can capture speaker related information effectively for a speech signal sampled at 16 kHz. it is demonstrated that the timing varying speaker related information can be effectively captured using hidden Markov models (HMMs) than GMM. It is established that the HMM based speaker recognition system requires significantly less amount of data during both during training as well as in testing than GMM based Speaker Recognition System. The performance evaluation of speaker recognition study using robust features for HMM based method and GMM based method is exploited for different mixtures components, training and test durations We demonstrate the speaker recognition studies on TIMIT
منابع مشابه
Statistical methods and Bayesian interpretation of evidence in forensic automatic speaker recognition
The goal of this paper is to establish a robust methodology for forensic automatic speaker recognition (FASR) based on sound statistical and probabilistic methods, and validated using databases recorded in real-life conditions. The interpretation of recorded speech as evidence in the forensic context presents particular challenges. The means proposed for dealing with them is through Bayesian in...
متن کاملPerformance Evaluation of Statistical Approaches for Text Independent Speaker Recognition Using Source Feature
This paper introduces the performance evaluation of statistical approaches for Text-Independent speaker recognition system using source feature. Linear prediction (LP) residual is used as a representation of excitation information in speech. The speaker-specific information in the excitation of voiced speech is captured using statistical approaches such as Gaussian Mixture Models (GMMs) and Hid...
متن کاملPhonetic Speaker Id
This paper describes the exploration of text-independent speaker identification using novel approaches based on speakers’ phonetic features instead of traditional acoustic features. Different phonetic speaker identification approaches are discussed in this paper and evaluated using two speaker identification systems: one multilingual system and one single language multiple-engine system. Furthe...
متن کاملSelected topics from 40 years of research on speech and speaker recognition
This paper summarizes my 40 years of research on speech and speaker recognition, focusing on selected topics that I have investigated at NTT Laboratories, Bell Laboratories and Tokyo Institute of Technology with my colleagues and students. These topics include: the importance of spectral dynamics in speech perception; speaker recognition methods using statistical features, cepstral features, an...
متن کاملAn overview of text-independent speaker recognition: From features to supervectors
This paper gives an overview of automatic speaker recognition technology, with an emphasis on text-independent recognition. Speaker recognition has been studied actively for several decades. We give an overview of both the classical and the state-of-the-art methods. We start with the fundamentals of automatic speaker recognition, concerning feature extraction and speaker modeling. We elaborate ...
متن کامل